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Cytotoxic Effect of Asbestos on
Macrophages in Different Activation
States
by Annette Wright,* K. Donaldson* and J. M. G. Davis*

The in vitro effects due to phagocytosis of asbestos by mouse peritoneal macrophages in various
stages of activation have been compared. The amphiboles proved relatively inert; chrysotile, however,
expressed a greater degree of cytotoxicity toward those populations of macrophages induced in vivo
with asbestos, than toward any of the other populations of cells. These results are compared with data
concerning the enzyme release from the different populations of macrophages following phagocytosis
of asbestos. The results indicate that those macrophages that have been exposed to a prior
stimulation of either amphibole or serpentine asbestos in vivo are particularly sensitive to exposure
to a second dose of a toxic fiber.

Introduction
The realization that the alveolar macrophage is

the first phagocytic cell in the lung to ingest inhaled
asbestos fibers prompted considerable research into
the direct effects of fibers on such cells in vitro.
Early studies (1, 2) have shown chrysotile to be more

toxic than crocidolite or amosite, a finding confirmed
by many research groups. Macrophage-activating
agents, such as zymosan, are known to initiate selec-
tive release of lysosomal enzymes (3). A study by
Davies et al. (4) demonstrated that mouse peritoneal
macrophages, upon phagocytosis of chrysotile in
vitro, showed a selective release of lysosomal en-

zymes in the absence of cell death. However,
Jaurand et al. (5) demonstrated an additional release
of lactate dehydrogenase, thus suggesting some loss
of viability, for alveolar macrophages exposed to
chrysotile in vitro. Studies by Hamilton and col-
leagues (6, 7) showed that macrophages exposed to
chrysotile in vitro and in vivo release greater quanti-
ties of the neutral protease plasminogen activator. In
addition, Miller (8) and Donaldson et al. (9) have
shown that asbestos-induced macrophages obtained
from either lung or peritoneal cavity possess an
altered surface morphology and increased number of
membrane receptors consistent with cell activation.
McGee and Myrvik (10) demonstrated that acti-
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vated macrophages are more readily injured upon
phagocytosis of toxic agents than resident cells.
Wright and Davis (11) showed that chrysotile-acti-
vated macrophages are more sensitive to the cyto-
toxic action of chrysotile in vitro than unstimulated
cells; in addition, Morgan and Allison (12) also sug-
gested that macrophages elicited by different bio-
chemical means may show a different response to a
further stimulus. The aim of this study was to inves-
tigate further the response of populations of macro-
phages in different stages of activation to the action
of asbestos in vitro, and enzyme release from these
cells was also compared.

Materials and Methods
Stimulation and Harvesting of Peritoneal
Exudate Cells (PEC)
Male CBA mice, 12 weeks old, were either un-

treated or injected intraperitoneally with one of the
following stimulating agents: 1 mL saline (Dulbecco's
A); 1 mL 10% protease peptone (Difco); 1.4 mg heat-
killed Corynebacterium parvum (Wellcome), a well-
known macrophage activating agent (13); 1 mL of
0.1% latex beads (0.81 ,) (Difco); 2.5 mg of UICC croci-
dolite, UICC amosite or UICC chrysotile suspended
in 1 mL saline.
Three days following injection, the mice were kill-

ed by ether overdose. The PEC were harvested by
peritoneal lavage and washed.
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Spreading Assay to Assess Degree of
Macrophage Activation
PECs (1 x 105) were cultured on 6 x 22 mm glass

coverslips in Ham's F10 medium (14) + 20% fetal
calf serum (FCS) at 370C. After precisely 1 hr, the
coverslips were washed vigorously to remove non-
adherent cells. The remaining adherent
macrophages were stained by May-Grunwald and
Giemsa stains. The relative degree of activation of
the population was expressed in terms of the per-
centage of cells completely spread. This means of
assessment has been shown to correlate with other
methods of activation measurement such as Fc re-
ceptor (9).

Culture and Treatment of PEC Populations
After harvesting, 1 x 106 PECs were cultured in

35 mm dishes in F10 + 20% FCS. After 1 hr, the
cells were washed with saline to remove nonadher-
ents. The resulting macrophage populations were
cultured in F10 + 20% FCS either untreated or
treated with 0.1% latex beads (0.81 ,), or 100l,g
UICC crocidolite, UICC amosite or UICC chrysotile
per plate.

Assessment of Phagocytic Ability of
Macrophages
The phagocytic ability of the macrophage popula-

tions was assessed microscopically after 24-hr cul-
ture with latex heads. A cell was termed phagocytic
if it contained more than three latex beads.

Assessment of Viability of Marcrophages
Viability of the cells was assessed, using Trypan

Blue exclusion, 24 hr following treatment with latex,
crocidolite, amosite or chrysotile.

Enzyme Assays
Lactate dehydrogenase (LDH) (15) and N-acetyl-p-

D-glucosaminidase (glucosaminidase) (16) levels were
assessed in both cells and culture medium after 24-hr
culture with crocidolite or chrysotile.

In Vitro Activation of Macrophages by
Lymphokine

Lymphokine, a known macrophage activating
agent, was produced according to the method of Laz-
dins et al. (17) by exposing mouse splenocytes to 10
,Mg/mL of Concanavalin A (Con A) in vitro for 24 hr.
Saline-induced macrophages were exposed to either
the resulting lymphokine or a Con A supplemented
control medium for 24 hr. The activated Con A con-
trol and untreated macrophages were then exposed

to UICC chrysotile for a further 24 hr and their via-
bilities assessed.

Statistical Analyses
The data from the spreading assay, macrophage

viability estimates and enzymes assays were exam-
ined by statistical analyses of variance, the within-ex-
perimental replication being used to provide esti-
mates of random variation.

Results
All of the populations of PECs were found to con-

tain 99% viable cells upon isolation from the groups
of treated mice. The relative degree of activRition of
the adherent macrophages, according to their ability
to spread on glass, is shown on Figure 1. A high de-
gree of activation was found in those populations in-
duced by asbestos and C. parvum, according to this
method of activation assessment; they did not differ
significantly in their ability to spread on glass. All of
the remaining populations showed a much lower abil-
ity to spread on glass, the protease peptone popula-
tion showing an increase over the unstimulated pop-
ulation (p < 0.05). ___ __

After 24-hr culture in vitro with latex heads, the
macrophage groups were all found to contain 95%
phagocytic and 95% viable cells following ingestion
of latex heads. The effect of 24-hr incubation with
chrysotile was very different from that of the other
two types of asbestos (Figs. 2 and 3). Crocidolite and
amosite proved noncytotoxic, and there were no sig-
nificant differences observed between the macro-
phage populations (p > 0.9 overall). Chrysotile, how-
ever, while exhibiting a low degree of cytotoxicity to-
wards the unstimulated and saline-induced popula-
tions, showed a slightly increased level of cytotoxic-
ity towards the C. parvum-induced cells. All three
types of asbestos-induced populations proved partic-
ularly susceptible to the cytotoxic action of chryso-
tile; viabilities of around 30% were obtained and no
significant differences were found among these three
populations. The populations of macrophages stimu-
lated in vitro by Con A or lymphokine did not show
an increased degree of susceptibility to the action of
chrysotile (Table 1).

Ingestion of crocidolite, compared to control,
stimulated an increased release of glucosaminidase
in all cell populations (p < 0.01). An even more con-
siderable release of this enzyme in all populations of
cells followed chrysotile ingestion (p < 0.01) (Figs. 4
and 5). The level of release of LDH was lower than
that observed for the glucosaminidase, although the
asbestos-induced populations released a greater
quantity of LDH than the unstimulated, saline and
C. parvum-induced populations (p < 0.025).
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FIGURE 1. Relative degree of activation of macrophage populations according to spreading assay. Calculated as % cells spread =

(number of cells spread/total number of cells counted) x 100. Results are means of at least three experiments SD.
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FIGURE 2. Percentage viability of macrophage populations after 24-hr exposure to asbestos in vitro. Treatment in vitro: O croci-
dolite; " amosite; E3 chrysotile. Macrophages unstimulated or stimulated with saline, protease peptone and C. parvum. Viabil-
ity calculated as % viability = (number of viable cells on treated plate/number of viable cells on control plate) x 100. Results
are means of at least three experiments + SD.
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FIGURE 3. Percentage viability of macrophage populations after 24-hr exposure to asbestos in vitro. Treatment in vitro: LI croci-
dolite; 0? amosite; g: chrysotile. Macrophages stimulated with latex and asbestos. Results are means of at least three experi-
ments ± SD.
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FIGURE 4. Enzyme release into medium after 24-hr exposure to asbestos. Enzyme: 1I LDH; glucosaminidase. Treated with: C =

control; Cr = crocidolite; Ch = chrysotile. Results are means of three experiments ± SE.
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FIGURE 5. Enzyme release into medium after

LDH; El glucosaminidase. Treated with: C
Results are means of three experiments.

Table 1. Percentage viability of in vitro activated macrophages
following 24-hr treatment with chrysotile.

In vitro treatment of % viability following
saline-induced macrophages ingestion of chrysotilea
Untreated control 67.2 + 7.0
Con A supplemented medium 69.5 ± 8.7
Lymphokine 69.8 ± 9.2

a % viability = (number of viable cells on chrysotile treated
plate/number of viable cells on control plate) x 100. Results
are means X of three experiments ± SD.

Discussion
Peritoneal macrophages can be obtained in a vari-

ety of states of activation possessing a variety of al-
tered properties (18). In general, activated macro-
phages are larger, have more granules, spread to a
greater extent on glass and have a greater capacity
to kill microorganisms and tumor cells than unstimu-
lated, resident cells (19). The degree of activation of
the macrophage can vary considerably, depending on
the nature of the stimulating agent; and this is illus-
trated in Figure 1 by using a single parameter for ac-
tivation assessment. Studies (6, 9) have shown that
intraperitoneal injection of asbestos can produce a
population of viable macrophages with characteris-

24-hr exposure to asbestos. Enzyme: 1W
= control; crocidolite; Ch = chrysotile.

tics consistent with cellular activation. In the present
study, crocidolite, amosite and chrysotile have all in-
duced intraperitoneal populations of cells both viable
and apparently activated to a degree similar to C.
parvum-induced macrophages.

All the populations of cells showed a similarly high
rate of phagocytosis, regardless of the activation
state, and no cell death was observed because of in-
gestion of nontoxic latex beads alone. The amphi-
boles displayed a similar level of low cytotoxicity to-
ward all types of macrophages (Figs. 2 and 3). These
cells, however, showed a diverse response to chryso-
tile. The nonstimulated and saline-induced macro-
phages appeared resistant to the cytotoxic action of
the dust, whereas the more activated populations
showed an increased susceptibility, the asbestos-
induced cells proving the most sensitive. These re-
sults agree with those of McGee and Myrvik (10), in
that activated macrophages tend to lose viability
more rapidly than nonstimulated cells upon phagocy-
tosis of a toxic agent. The cells activated by lympho-
kine in vitro (Fig. 4) did not display an increased sen-
sitivity to the action of chrysotile, thus suggesting
that macrophages activated in vivo probably possess
differing properties to those activated in vitro. It is
of interest to note that, while the amphiboles- croci-
dolite and amosite- appeared relatively inert in
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vitro, both types of fiber have the capacity in vivo to
induce macrophages that show a high sensitivity to
the action of a cytotoxic dust. This is not due simply
to an in vivo stimulating activity of particulate alone,
as latex-induced macrophages did not display a high
sensitivity to chrysotile.
The data regarding enzyme release from the mac-

rophages (Figs. 4 and 5) agree with the finding of
Hamilton (6), in that asbestos-induced macrophages
secreted a similar quantity of lysosomal enzyme into
the culture medium to that seen for the nonstimu-
lated cells. Phagocytosis of crocidolite induced a
slight release of glucosaminidase by all populations;
however, chrysotile stimulated a large release of en-
zyme similar to that seen in other reports (20). This
large release of lysosomal enzyme was not accompa-
nied by a corresponding release of cytoplasmic LDH
for unstimulated, saline and C. parvum-induced mac-
rophages. However, an increased release of LDH
was observed for the asbestos activated populations,
corresponding to the increased loss of viability illus-
trated in Figure 3.

In conclusion, this report illustrates that asbestos-
induced macrophages, upon phagocytosis of a second
dose of dust, do not respond in a manner similar to
that observed for other types of macrophage popula-
tions. This must be taken into consideration when
investigating the effect of inhaled particles on mac-
rophages in the lung. Such cells may already have
received prior stimulation by other toxic agents or
pathogens and also persistent exposure to different
dusts, rather than the single dose often used in the
in vitro situation.
The authors are grateful for the assistance of Mrs. G. M.
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